Sustainability
News 03.13.2024
Concrete + Carbon Reduction: Challenges, Innovations, and a Sustainable Future
NAIOP WA blog post explores the role concrete and cement can play in reducing embodied carbon in our buildings.
NAIOP WA
External Source
If you develop, design, or build buildings in Washington, you're going to be hearing a lot more about solar panels in the next year.
Why? A revised State Energy Code will potentially trigger enhanced solar requirements for new construction. Electrical demand will continue to increase with the move towards using electricity for heating and domestic hot water, along with the shift toward electric cars to reduce fossil fuel use. Need and opportunity are converging. Solar is also a way to address our broader carbon-reduction goals while providing a renewable energy source.
Read on to learn the basics of photovoltaics [PVs], how they integrate with buildings, and what's happening with public policy.
Solar panels have been mainstream in America since the 1970s when an oil shortage made everyone aware of our dependency on foreign oil and, to counter public opinion about this dependence, President Carter had solar panels installed on the White House. Since these early installations, system efficiencies, manufacturing processes, and installation techniques have greatly improved.
You've seen a PV panel, but what is it? Photovoltaics is the process of converting light energy into electricity. A PV panel [or module] is made up of layers of solar cells composed of silicon, phosphorus, and boron. Light [photons] from the sun dislodges atoms in the semiconductor material, causing movement of electrons. This movement creates a voltage potential between the negative and positive surfaces in the panel, thus creating electricity. Modules can act alone or grouped to form PV arrays.
The more modules in a PV array the more potential output if the conditions are right. The largest arrays, such as some in California, can exceed 600 Megawatts [MW] of output, enough to supply approximately 100,000 homes on a peak output day.
Ballasted PV installed on Expedia Campus in Seattle
PV efficiency is the percentage of solar energy a panel converts to electricity—a hot topic in the solar industry. Every year sees incremental increases in efficiency. Most silicon-based PV panels range from 15 to 20% efficiency, and some highly-efficient panels now reach upwards of 23%. The theoretical limit is about 33% for silicon-based panels.
New technologies are pushing this number even higher. Perovskite is the new buzzword as a likely replacement for silicon. Perovskite panels can potentially reach 40-60% efficiency, but with every advantage comes disadvantages. Early perovskite panels were brittle and degraded quickly, however scientists and engineers are now discovering ways around these issues. More work is needed before the new ideas can be implemented at industrial scale, but when they are, the world of solar panels will change.
PV panels have multiple installation options depending on the structure and substrate. Each has its pros and cons.
The current 2018 Washington State Energy Code, Section C411 [Solar Readiness], requires new buildings to be provisioned for future installation of PV panels. A building under 20 stories needs solar zones totaling at least 40% of the roof area or 20% of the electrical service size, whichever is smaller.
Revising and approving the 2021 WSEC code sits at the industry-committee level now, with the Legislature scheduled to vote on its adoption in Winter 2022/2023. Here's the 2021 Code Review and Adoption Schedule. The current solar proposal would change the PV requirement from solar readiness to a mandatory renewable requirement of 0.5 watts per square foot. See this Preliminary Cost Benefit Analysis for the 2021 Washington State Energy Code [pages 10-11] for additional information.
The federal government and State of Washington heavily incentivize PV installation. The federal government offers a tax credit for both residential and commercial installation, and Washington offers a sales tax exemption for systems up to 100kW. In addition, solar generally qualifies for accelerated fully depreciated assets.
Here's more about the Federal Investment Tax Credit [ITC], which currently expires 12/31/2023. This provides a tax credit that can be claimed on corporate income taxes for 26% of the initial cost of a PV system installed in 2022. For 2023 this reduces to 22%, and beyond 2023 it reduces to 10%. Washington sales tax exemptions, which won’t expire until 1/1/2030, exempt state and local sales tax for all installations under 10kw.
The next few years are going to be exciting as our projects align with the new energy code and our state moves to electrification of heating and domestic hot water. The grid needs new capacity. Renewable solar energy is currently our best option to move the needle toward becoming a carbon-free state.
If you have questions, drop me a line at erik.bedell@gly.com.
Tags:
Director of MEP Services
P.E.
Erik uses his extensive engineering background to assist with integrating mechanical systems into new and existing buildings. With many years of designing mechanical systems under his belt, he’s proven to be an invaluable asset to our clients—specializing in complex life science, technology, industrial, and healthcare projects. Erik previously lived in Colorado, where he developed an obsession for mountain biking. Now racing competitively, he and his family own 12 bikes, living the principle that the correct amount of bikes to own is n+1, with n being the amount of bikes they currently own.